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We shall describe the statistical properties of the turbulent motions c.f an 

incompressible fluid In an unbounded space In a random force flelc X(X, t) 

with the aid of the joint characteristic functional of the velocity field 

U(X, t) and the random force field 

Q 10 (x, t), f (x, t)l = (exp {i @.u) + i 0. WI> (1) 

where the parentheses Indicate integration of the scalar product of the 

functions over all at and all t , and the angular brackets Indicate the 

mean value operation. This functional gives a complete statistical descrip- 

tion of the velocity and external force fields In the sencr that for functLons 

of the form 

0 (x, t) = i f&8 (x - x,) 6 (t - L), f (x, t) = s f,6 (x - x,) 6 (t - tn) (2) 
n=1 Tl==l 

Its values are the characteristic functions of the probability distributions 

for the values of the fields under consideration for all finite point sets 

(rg , tn ) of space-time. Let us consider the characteristic functional for 

the function set 8(X, t) and f(X, t), which permit Fourier transformation 

with respect tc x , and let us turn to its wave representation, setting 

11 [Z (k, t), g (k? t)] = Q [(27~)-~ \ C+~Z (k, t) dk, (2n)-” 1 eiraxg (k. t) A] (3) 
. 

In the work of Hopf [l] It is shown that the characteristic functional of 

the velocity field satisfies a certain linear equation In the variational 

derivatives which arises from the Navler-Stokes equations and the continuity 
equation. An analogous equation also holds for the functional A . It has 

the form 
[($ + vk2)D,, (k, t) - AjE (k) Dga (k; t)]n = 

389 
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= Aj3 (k) k, \ dk’D,= (k’, t) D,, (k - k’, t) A [Ajl(k)=6,,- !!$) (4) c 

(an equation of very Similar form Is derived In the work of Kralchman and 

Lewis [ 23). Here v Is the corfflclent of viscosity, D, (k, t) and Dq (k, t) 
are variational differentiation operators* with respect to Zj (k, t) and 

gj (k. t), and summation is Implied by repeating Greek indices. We note that 
the left-hand side of Equation (4) comes from the linear terms of the Navler- 

Stokes equations and the right-hand side from the nonlinear terms. 

The condition of solenoidallty of the velocity field (expressed by the 

continuity equation for an Incompressible fluid) reduced to a functional A 

Cl] that must depend only on a component of the vector function c(k,t) 

which is orthogonal to the wave vector k . Let us denote such a function 

by z* (k, t): so that zj* (k, t) = Aia (k) z, (k, t). Analogously, If the exter- 

nal force field is solenoidal, A will then depend only on a component of 

g*(k,t) of the function g(k,t) . 

Let us consider a random external force field as given and being satlstl- 

tally stationary In time. Obviously, a statlstlcally stationary velocity 

field will correspond to It, and the characteristic functional A of these 

two fields will be a solution of Equation (4) satisfying condition 

A IO; g (k, t)l = G [g (k, t)l (5) 
where c Is the given characteristic functional of the external force field. 

The determination of such a solution wlll permit a complete statistical 

description of stationary turbulence to be given. Random force fields are, 

generally speaking, fictitious (and In problems where they are real as, for 

example, the Archlmedian forces for thermal convection, they must not be 

prescribed, but must be determined together with the hydrodynamic fields), 

but let us prescribe them so that an energy infiux Is provided on the average 

only to the large-scale components of turbulence. Then It is to be expected 

that the fictitious character of the external force will not affect the sta- 

tistical characteristics of the small-scale components of the turbulence, 

and the latter wlil be correctly described by the solution of Equation (4) 

for condition (5). 

As the external force field let us choose a sollnoldal, Gaussian, station- 

* Formula 
SF = 

s 
dk dt 6a, (k, t) Dab (k, t) F 

for the principal linear part aF of the variation of the fWKtiona1 F for 
an lnflnltesslmal variation b@(k.t) of Its functional argument serves to 
define the variational derlvatlveD (k t) F of the functional Fisk, t )I 
with the function s, at the point “‘(k,t) . 
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ary, homogeneous and isotropic random field with zero average value. Its 

characteristic functional will have the form 

G [g (k, t)l = exp { - +\ q;*(k, tl) g,*(- k, h) f (~6 / f, - t, I) a dt, &) (6) 

The function /(k,~) which completely determines this functional ls 

equivalent to the spatial Fourier transform of the space-time correlation 

function of the external forces. More precisely, 

(X, (xl, tl) X,? (x2, t2)) = \ eik-xl)Az3 (k) f (k, \ I, - t, j) dk (7) 

Let us solve Equation (4) by the method of perturbation theory. Namely, 

let 'us note that the fluid which Is in motion represents a system with lnter- 

nal Interactions which for the iZulerlan description of the motion will be 

Inertial interactions between the spatial Inhomogeneities of the velocity 

field described by the nonlinear terms In the Navler-Stokes equations (ln- 

eluding the pressure gradient which Is expressed by quadratic sums of the 

velocities at the same moment of time). Moreover, the ratio of typical 

values of the Inertial forces to the viscous forces, I.e. the Reynolds number 

R, will be a constant of the Interaction. The method of perturbation theory 

consists In regarding the effect of the Interactions as a disturbance Imposed 

on a linear system and seeking a solution of the nonlinear dynamical equa- 

tions In the form of a series In powers of the constant of Interaction. 

Thus, we will seek a formal solution of Equation (4) In the form of a series 

In powers of the Reynolds number. It can be expexted that the series will 

be convergent for small values of I) , i.e. It will represent an exact solu- 

tion (which, It Is true, will be useful In describing cnly weak turbulence). 

But for large values of R the formal solution of Equation (4) In the form 

of a series In powers of R can also be useful for a variety of purposes, 

for example, as a standard with which other approximate solutions can be 

compared. 

The nonlinear terms of the Navler-Stokes equations are one order larger 

with respect to R than any of the linear terms. Therefore, the right- 

hand side of Equation (4) Is one order larger with respect to I) than any 

of the terms on the left-hand side. We shall take this circumstance into 

account to obtain equations for the successive terms of the expansion of the 

functional A In powers of A . In particular, the equation for the zero 

term ,& Is obtained from (4) by rejecting the right-hand side. As Is not 

difficult to verify, the solution of such an equation for condition (5) has 

the form 03 

A, = G It* (k, t) + g* (k t,!, L* (k, t) = i e+‘(‘+ Z* (k, T) dz (8) 

Setting g* (k, t) E 0, here, we obtain the zero approximation for the 
characteristic functional of the velocity field. According to (o), the 

velocity field in this approximation will be Gaussian; Its correlation 
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function is found to be equal to 

A,p(k) =z’ 
(u, (x1, tI) up (x2, t,)) = \ ei*i.(Xz-xl) dk 2Yk” \ f (IL, 1 z 1) e@’ Ir+~dll dz (9) 

I * 
--co 

Hence, it follows that the klnetlc energy spectrum of the turbulence In 

the zeroth approximation with respect to the Reynolds number has the form 

E, (k) = !$ T f (k, 1 ‘t I) e-vk’ ITI dz 
(10) *. 

--co 
Let us write the expansion of the functional A In a series in powers 

of R in the form 

h = A, =$ iz/,, &* (k, t), g* (k, t)l (11) 
I,=” 

Here M, is a term of order 8’ (wherehI E 1). Substituting this series 
into Equation (4), changing from variational differentiation with respect to 

zJ(k,t) and g,(k,t) to differentiation with respect to C,*(k,t) and 

g,*kt), making use of the definitlone (8) and (6) of the functional ,jc and 

collecting terms of equal powers In R, we obtain an equation of the form 

Li (k t) M, = {A+‘) (k, 1) + Ajc2) [t (k, t); k, tl +Ajc3) [S (k t); k, tl} -11,~ (12) 

(t (k, t) = 5* (k, 0 -t g” k 0) 

for the functionals M. for n > 1 . 

Here L, Is a differential operator of first order defined by Formula 

Lj (k, t) 1 A~ja (k) [Dca* (k, 1) - Dcil* (k, t)l (13) 

and _~j”’ IS an operator containing repeated variational differentiation and 

defined by Formula (15) 

~j(‘) (k, t) = \ dk, dk,dt,dtzaj, 1,q (k, 1 / k,, t, 1 k,, tt) DC,,* (k,, 11) DY,~-* (k,, tz) 
. 

aj, pq (k, t 1 k,, t, / k,, tz) = Aja (k) li,A?,, (k,) Aaq (k,) 6 (k, + k, - k) n 

where @(t) is a function equal to 1 for t > 0 , a for t = 0 and 0 

for t c 0 ; the operator Aj”” Is obtained from ,Al”’ by replacing the opera- 

tor D, 
ZJ 

+ (k,, t,)D,,,:.(k,, I?) by the operator 

- 
\ j (X,, 1 I? -- T 1) E,(- k,, T) drL$,* (k,, tl) - 

- 
\ 
f (A,, / t, - zl)Ep (- k,, 4 dTQr,* (k,, f.') 

. 

lastly,Ajt3' is a quadratic functional obtained from Aj(‘) by replacing both 

operators Dcj* (k, 1) by the functions 

c I f (k, t - T I) Ej (- k, r) dT ., 
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The functionals MI, At,, . . . are determined consecutively from Equations 

(12), for which each time a solution of the Inhomogeneous equation 

Lj (k, t) M, = Fj(%) 
with a known (determined from the previous step) right-hand side must be 

sought which satisfies condition 

111, IO, g” (k, t)l = 0 (13; 

(condition (15) for n > 1 is a consequence of condition (5)). Let us 

denote such a solution by the symbol 

M, = Li-’ (k, t) Fj(“) 
We will then have 

S, = Lj-“Aj’” (r = 1, 2, 3) (l(i) 

Thus, for example, It Is not difficult to be convinced that 

M, == S,l = \ &* (k’, t’) Ajc3) 15 (k, t); k’, 1’1 dk’dt’ (17) 

This quantity Is a homogeneous power functional of third power relative 

to the functions C*(ic,t) and q*(k,t) . From the definition of the operz- 

tors Ai and S, It follows that if ,4/ is a homogeneous;power functional 

of power m, then the quantities S,j(, SIM and S,H are, respectively, hono- 

geneous power functlonals of powers m -1, m + 1 and m+ 3 (with the exceptions 

that the operator S, vanishes for power functlonals containing not more than 

one component of c,*(&$) and S2 vani- 

shes for functionals which are lnde- 

pendent of C*(k,t)). Making use of 

these rules and Formula (16), we are 

convinced that Jfz Is a sum of homo- 

geneous power functlonals of 2, 4 and 

6 powers, M3 of 1, 3, 5, 7 and 9 

powers, and in general 

:I11 
JI,,,= 2 Jr;;:“‘, _I/,,, , - 

,,,-;I 

:tri : L 
,‘ J,,i‘““’ I) 

1 
I,!, L 

11, ,! 

(1s) 

where ~~~::“’ are homogeneous power 

Fig. 1 
functlonals of power m . 

The structure of the series (11) is 

shown on Pig. 1, where the number n of the functionals ,V, (which Indicates 

the order with respect to R of the corresponding terms of thf> series) is 

plotted along the abscissa and the power m of the hombgeneous power 
functionals 11/,, (“” along the ordinate. Moving along the graph from left to 
right, the lines directed downwards represent the operator S,, those sloping 

gently upwards represent S, and those sloping steeply upwards represent S,. 
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The graph Provides information not only about the set of functional5 k?$@, 

which form &, but also &out the method of calculating any functional 

MLm,"": for this it is necessary to sum the contributions corr~s~on~~~ to 

all possible polygonal paths with abscissa vertices not greater than n 

which terminate at the point (n,m). We shall designate such polygonal lllnes 

as diagrams which correspand to the functZonalM~m,m), Tks.n~, for example, to 

the fiinctional tt$@ there corresponds one d%agram fFZg.2) which representa 
the operator S,S,, so thatj@' = s$,'t. It is not dlf&cult to verify that 

this functional can be written in the form 

A$$$?' = \ ~k~k’~~~~‘~~* (k, tf {A,"' (k, f) Sa* (k', t') - 

- ;'c=* (k', I') ABC') (k, t))d.'"' fE(k, I); k', t'l (19) 

D B 

so that 
_ ; ̂ -- 

M*!Q = (S,2s$, -i_ S,S$,S, -+ sg,cs,) t (20) 

t ZR &I of these expressions can be represented by one 

summary diagram (Fig.4). To the functional ~?f,c~) there 
Fig. 2 already correspond 12 diagrams, etc. 

The construction of diagrams of one or another form generally proves to 

be a useful way of representing a perturbation theory series. The most 

import;ant example of thXs are the Feinman diagrams in quantum electrodynamics. 

Magrams for the solution of theNavier- 

Stores equations were constructed by 

WYld t31, who rtlso shoed how to con- 

struct diagrams for computing the cor- 
2 3 n relation function of the velocityfJeM 

from them. 
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it Is possible to obtain the expansion 

E (k) = E, (k) +.S (k) i &?’ 
n=1 

(22) 

for the kinetic energy spectrum E(k), where E,(k) is given by Formula (10) 

and S(k) Is an operator which contains repeated variational differentiation 

and Is defined by Formulas 

s (k) = - ; \ di-2 (k) dk,dtdt,a,, (k, t/k,, tl) Dg, (k, t) DC; (k,, tl) 

upq (k, t/k,, tJ = Asp (k) AGq (k,) evk’t+k~‘fI (3 (- t) @ (- tl) (23) 

Here dfl(k) 1s surface element of a unit sphere in wave vector space (k). 

The following two remarks can be made about the structure of the series 

(22): firstly, the expansion of the function k(k) in a series in powers of 

the Reynolds number contains only even powers of A ; secondly, It will 

simultaneously be an expanslon of the function E(k) In a functional power 

series relative to the function f(k,lTl) (the external force spectrum) where 

the term of order Ran (I.e. the term S(X.)M$) Is a homogeneous power 

functional of power n+l relative to the function /(k,[~[). The first of 

these remarks Is trivial and the second follows from the diagrams of Fig.1 

If it Is taken Into account that the operator S1 does not change the power 

of the power functionals relative to f(k,lTl), that S, raises the power by 

1 and that S, raises the power by 2. 

From the second observation It follows that the functional S(k)M,‘,2) is 
analogous In some degree to the Wconvolutlon" of n+l functions 4 (i.e. 

to the probability density of the sum of n +l Independent random quantities, 

each of which has a probability density proportional to f ). These I'con- 

volutlons" have the following property: if 7 Is different from ze:>o only 

In the region of very small wave numbers O<k<k,, then In the region of 

very large wave numbers k>ko "convolutions" only of a very large number 

of functions f will be different from zero; but such nconvolutions" will 

be only slightly dependent on the specific form of the function f (andwill 

be close to some universal function of k corresponding to one or another 

of the so-called Infinitely decomposable probability distribution laws). 

Analogously can be expected that If the spatial variation of the external 

forces has only large-scale Inhomogeneities, I.e. if f is different from 

zero only for O\<I~\(&, then for h-Sk,- the functionals S(k)M!$ ~111 
be different from zero only for very large numbers 2n , and these functlon- 
als will be only slightly dependent on the specific form of the function f , 

so that if the series (22) converges, then its sum E(k) for k>ko will 

be close to some universal function of k . Thus, there arises the posslbi- 

llty of reaching an analytical proof of the hypothesis of A.N. Kolmogorov 

regarding a universal ststlstlcal equilibrium of the small-scale components 

of turbulence. 
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