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We shall describe the statistical properties of the turbulent motions cf an
incompressible fluid in an unbounded space in a random force filelc X(x, t)
with the aid of the Joint characteristic functional of the velocity field
u(x, ¢) and the random force field

Q10 (x, 1), f (x, )] = Cexp {i (0-u) + i (F-X)}) (1)

where the parentheses indlcate integration of the scalar product of the
functions over all X and all ¢ , and the angular brackets indicate the
mean value operation. This functional gives a complete statistlcal descrip-
tion of the veloclity and external force flelds in the senze that for functlons
of the form

N
Bt =3 08(x—x)d(—t),  F(x0=3 S (x—x) 3 —t) (2)
n=1 n=1

its values are the characteristic functlons of the probabllity distributilons
for the values of the flelds under consideration for all finite point sets
(x,, t,) of space-time. Let us consider the characteristic functional for
the function set 8(%, ¢) and f£(x, ¢), which permit Fouriler transformation
with respect tc X , and let us turn to its wave representation, setting

Alz(k, 1), gk, )] = Q [(2n)'3ge“‘"‘z (k, 1) dk, (2m)~ R eikxg (k. t) dk] (3)

In the work of Hopf [1] it is shown that the characteristic functional of
the velocity field satisfies a certain linear equation 1n the variational
derivatives which arises from the Navier-Stokes equations and the continuity
equation. An analogous equation also holds for the functional A . It has

the form
(2 4Dy, () — B (8) Dy (i )| A =
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= 8jp (9 ki {dk'D,,, (K, 1) Doy (k — K, 1) A (Aﬂ W =8, — 2L) (g
(an equation of very similar form is derived in the work of Kraichman and
Lewis [2]). Here y 1s the corfficient of viscosity, l){j(k,t) and l)gj(k,t)
are variational differentiatlon operators * with respect to z; (k, t) and
gj(k,t), and summation 1is implied by repeating Greek indices. We note that
the left-hand side of Equation (4) comes from the linear terms of the Navier-
Stokes equations and the right-hand side from the nonlinear terms,

The condition of solenoidality of the velocity field (expressed by the
continuity equation for an incompressible fluld) reduced to a functional A
[1] that must depend only on & component of the vector function e(k,t)
which is orthogonal to the wave vector k . Let us denote such a function
by z* (k, t), so that z;* (k, t) = A;, (k) z, (k, ¢). Analogously, if the exter-
nal force field 1s solenoidal, A will then depend only on a corponent of
g§*(k,t) of the function g(k,¢) .

Let us consider a random external force field as given and belng satisti-
cally stationary in time. Obviously, a statistically stationary velocity
field will correspond to it, and the characteristic functional A of these
two fields will be a solution of Equation (4) satisfylng condition

A0; g k, )] = G g (k, t)] (5)

where G 1s the glven characteristic functlional of the external force fleld.

The determination of such a solution will permit a complete statistical
description of stationary turbulence to be glven. Random force flelds are,
generally speaking, fictitious (and in problems where they are real as, for
example, the Archimedian forces for thermal convection, they must not be
prescribed, but must be determined together with the hydrodynamic fields),
but let us prescribe them so that an energy infiux 1s provided on the average
only to the large-scale components of turbulence. Then it is to be expected
that the fictitious character of the external force will not affect the sta-
tistical characteristics of the small-scale components of the turbulence,
and the latter will be correctly described by the solution of Equation (%)
for condition (5).

As the external force field let us choose a solinoidal, Gaussian, statlion-

* Formula
oF = S dk dt 8ay (k, 1) Dy (k, 1) F

for the principal linear part &F of the varlation of the functional p for
an infinitessimal variation &a(k.t) of 1its functional argument serves to
define the variational derivativeD, (K, t)F of the functional Fla(k,t)]
with the function g, at the point ’(k,t) .
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ary, homogeneou: and isotroplc random field with zero average value. Its
characteristic functional will have the form

6 lg (k) = oxp [ — L{ g%k 1) g, (— k1), | 1 — o)) dkdtydbo} 6)

The function f(k,T) which completely determines this functional -is
equivalent to the spatial Fouriler transform of the space-time correlation
function of the external forces. More precilsely,

-3

(Xa (xg, ) X (x5, 1)) = % elbx—xIA,, (k) f (K, Py, — 1) dk (7

Let us solve Equatlon (4) by the method of perturbation theory. Namely,
let us note that the fluld which 1s in motion represents a system with inter-
nal interactions which for the Eulerlan description of the motion will be
inertial interactlons between the spatial lnhomogeneities of the velocity
field described by the nonlinear terms in the Navier-Stokes equations (in-
cluding the pressure gradient which 1is expressed by quadratic sums of the
velocitles at the same moment of time). Moreover, the ratioc of typical
values of the lnertial forces to the viscous forces, 1.e. the Reynolds number
R , will be a constant of the interaction. The method of perturbation theory
conslsts 1in regarding the effect of the interactlons as a disturbance imposed
on & linear system and seeking a solutlon of the nonlinear dynamical equa-
tions in the form of a serles 1ln powers of the constant of interaction.

Thus, we will seek a formal solution of Equation (4) in the form of a series
in powers of the Reynolds number. It can be expexted that the series will

be convergent for small values of & , 1.e. 1t will represent an exact solu-
tion (which, 1t 1s true, will be useful in describing cnly weak turbulence).
But for large values of R the formal solution of Equation (4) in the form
of a serles in powers of A can also be useful for a varlety of purposes,
for example, as a standard wlth which other approximate solutions can be
compared.

The nonlinear terms of the Navier-Stokes equations are one order larger
with respect to X® than any of the linear terms. Therefore, the right-
hand side of Equatlon (4) 1s one order larger with respect to R than any
of the terms on the left-hand side. We shall take this circumstance into
account to obtain equations for the successive terms of the expansion of the
functional A 1n powers of AR . In particular, the =quation for the zero
term A, 1s obtained from (4) by rejecting the right-hand side. As is not
difficult to verify, the solutlon of such an equation for condition (5) has
the form o

Ao =G Ik, )+ g* (0], @k ={ ek de @

t

Setting g* (k, t) = 0, here, we obtain the zero approximation for the
characteristic functional of the velocity fleld. According to (6), the
velocity fileld in this approximation will be Gausslan; its correlation
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function 1s found to be equal to
o]

Ak S
Bag (k) \ f (e eisttetl dr o (9)

<ua (xla tl) uB (xz, t2)> = Beil\'-(xz—x.) dk oIvk?

Hence, it follows that the klnetlc energy spectrum of the turbulence in
the zeroth approximation with respect to the Reynolds number has the form

(o]
o N
Eo () ==\ [k, |t) e¥iede (10)
-—00
Let us write the expansion of the functional A 1n a series 1in powers
of R 1in the form ~
A=A, 3 M, [L* (k, 1), g* (k, )] (11)
n=y
Here p, 1s a term of order A*(where M, = 1). Substituting this series
into Equation (4), changing from variational differentiation with respect to
z,(k,t) and g,(k,t) to differentiation with respect to ¢,*(k,z) and
g,*(k,t), making use of the definitions (8) and (6) of the functlonal A, and
collecting terms of equal powers in R, we obtaln an equation of the form

Li (k ) My = {4 (k, 1) + 4P [E(k, 0); k, 1] + A, [E(k, 0); K, 1]} Moy (12)
(€ (&, 1) =L*(k, 1) + g* (k, 1))
for the functionals 4, for n > 1.
Here [, is a differential operator of first order defined by Formula
Li (&, 1) = Aj (k) [Dg» (k, 1) — Dy » (k, )] (13)

and .41‘” is an operator contalning repeated variational differentiation and
defined by Formula (14)

A0 (1) = dit, Ay dty dlaag g (k1 1Koy 1) D o (i 1) Do (K 1)
aj, pq (k, t | ky, t] ky, 1) = Ajy (k) ksl (k) Aaq (ko) 8 (ky + ks — k) <
S gmvhit U=tk (-8 D (1 — 1) D (1 — ty)

where &(¢) 1s a function equal to 1 for ¢t > 0O, 4 for ¢ =0 and o]
for t < O ; the operator Aj('z\ 1s obtained from AJ‘” by replacing the opera-

tor Dtp* (k,, Il)D;q«.v (ks, 1,) by the operator
= § 7 G 11— D) B (= Ky, 1) AT (yy 1)) —

— G 1t = ) B (= Koy 1) deDe s (o 1)

lastly, Aj“” is a quadratic functional obtained from A]-(” by replacing both
operators Dnj* (k, {) by the functions

V|t — )& (=K ) d

v
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The functionals M,, ¥,,... are determined consecutively from Equations
(12), for which each time a solution of the inhomogeneous equation

L; (k, t) M, = F™

with a known (determined from the previous step) right-hand silde must be
sought which satisfles conditlon

M, 10,g*k, 1)l =0 (15)
(condition (15) for n >> 1 1s a consequence of condition (5)). Let us
denote such a solutlon by the symbol
M, =L (k,t) F™
We will then have
M, = (Sy + S, + S3) My, S, =LA (=123 (10

Thus, for example, 1t 1s not difficult to be convinced that
M, = S, = SC:* &', t") A2 |E (k, 1); kK, '] dK’ dt’ (17)

This quantity 1s a homogeneous power functional of third power relative
to the functions ¢*(k,t) and g*(k,z) . PFrom the definition of the operi-
tors Aj(r) and S, 1t follows that if ¥ 1is a homogeneous power functional
of power m, then the quantities S,¥, S;# and S,¥ are, respectively, homo-
geneous power functlonals of powers m—1, m+1 and m+ 3 (with the exceptions
that the operator S5, vanishes for power functionals containling not more than

5 B one component of ¢,*(k,z) and §, vani-

m —~ shes for functionals which are inde-
pendent of (*(k,z)). Making use of
12 A these rules and Formula {16), we are
pd convinced that ¥, is a sum of homo-
geneous power functionals of 2, 4 and
9
7 6 powers, M, of 1, 3, 5, 7 and 9
6 ) powers, and 1n general
an . RIER A1)
A M= S ME, My 5 S
3 v { m:—l ne—At
— 7 ‘ (18)
04 L (n)
! 2 3 4 n where A, are homogeneous power
functilonals of power m
Fig. 1

The structure of the series (11) is
shown on Fig.l, where the number n of the functionals #, (which indicates
the order with respect to R of the corresponding terms of the series) is
plotted along the abscissa and the power m of the hombgeneous power
functionals J/{"' along the ordinate. Moving along the graph from left to
right, the lines directed downwards represent the operator ,, those sloping
gently upwards represent S, and thcse sloplng steeply upwards represent §,.
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The graph provides information not only about the set of functionals M,(zm),
which form 4, , but alsoc about the method of calculating any functional

M. for this it is necessary to sum the contributions corresponding to
all possible polygonal paths with absclssa vertices not greater than n
which terminate at the point (n,m). We shall deslgnate such polygonal lines
as diagrams which correspond to the functional M f,lm), Thus, for example, to
the functional f’&é’f_f;’ there corresponds one diagram {Fig.2) which represents
the operator S §. so that Afgz} = §,851. It is not difficult to verify that
this functlonal can be written in the form

MP = i dkdk’drdt’ Lg* (k, 1) {AB“) (k, 1) L* (k', t)) —

.

— Lo (k1) 4% (k0 A, LBk, 0 K 0] (19)

To the functional M, there corresponds three diegrams (Fig.3} which
represent the operators §,25,5;, §,5,5,S; and 5.5,25;,
50 that

1"!4{2) o= {5128253 -+ 31825183 -+ 8281283} 1 {20}

All of these expressions ecan be represented by one
summary diagram {Fig.4). To the functional [} ¥ there
already correspond 12 diagrams, eto.

Flg. 2

The construction of diagrams of one or another form generally proves to
be a useful way of representing & perturbation theory series. The most
important example of this are the Feinman dlagrams in quanbtum electrodynamics.

A Diagrams for the solution of the Navier-

I A ﬁ Stokes equatlions were constructed by
) Wyld (3], who alsoc shoed how to con-
5(" struct diagrams for computing the cor-

! 2 J # relation function of the velocity field
I from them.
4 f R N
PR
m 3
J *"“'7“ rd ]
g/ féﬁ — Z 3 p
gb
7 Z 3 7
Pig. 3 Pig. &

With the help of variational differentiation of serles {11} expansions in
powers of R can be obtalned for various statistical moments of the velocity
field. Thus, for example, starting from the obvious formula

(Ua (xl’ t) g (Xg, )y = — S3_i(k“x‘+k*‘x*}dk1dk2{Dza(ki,t)DzB(kmt)A}z:&g‘Eo (21)
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it is possible tn obtain the expansion

E (k) =E, (k) +'S (k 2 M, (22)

n=l1

for the kinetic energy spectrum Z£(%), where Ey (x) is gilven by Formula (10)
and S(x) is an operator which contains repeated variational differentiation
and is defined by Formulas

S (k) = — k—:SdQ (k) dk,dtdt,a,, (k, t/k,, ty) D‘g;o (k, t) DC; (k,, ty)
apy (k, t/ky, ;) = Ayp (k) Agq (ky) 850 @ (— 1) D (— ¢ty) (23)
Here 4Q(k) is surface element of & unit sphere in wave vector space (k).

The following two remarks can be made about the structure of the series
(22): firstly, the expansion of the function ‘m(k) in a series in powers of
the Reynolds number contalns only even powers of R ; secondly, it will
simultaneously be an expansion of the function #{(x) in a functional power
series relative to the function g(k,|r|) (the external force spectrum) where
the term of order R?* (i.e. the termAS(A)ﬂl;25 1s a homogeneous power
functional of power n+1 relative to the function g{(x,|r|). The first of
these remarks 1s trivial and the second follows from the diagrams of Fig.l
if it 1s taken into account that the operator S, does not change the power
of the power functicnals relative to yr(k,|7|), that S, raises the power by
1 and that S, ralses the power by 2.

From the second observation it tollows that the functional S(k)ﬂl;ﬁ) is
analogous 1n some degree to the "convolution" of n+1 functions s (i.e.
to the probability denslty of the sum of n +1 independent random quantities,
each of which has a probability density proportional tc f ). These "con-
volutions" have the following property: if y 1s different from zero only
in the reglon of very small wave numbers 0<k<ko, then in the reglon of
very large wave numbers kK>>ky "convolutions" only of a very large number
of functlons s will be different from zero; but such "convolutions® will
be only slightly dependent on the speciflc form of the function 7 (and will
bé close to some universal function of % corresponding to one or another
of the so-called infinitely decomposable probability distribution laws).
Analogously can be expected that if the spatial variation of the external
forces has only large-scale inhomogenelties, i.e. if s 1s different from
zero only for l)<< k Ao, then for ﬁ::>kk the functionals S(k)AJSQ will
be different from zero only for very large numbers 2n , and these function-
als will be only slightly dependent on the specific form of the function g,
so that if the serles (22) converges, then its sum g(x) for Ak will
be zlose to some universal function of % . Thus, there arises the possibi-
1lity of reaching an analytical proof of the hypothesis of A.N. Kolmogorov
regarding a universal ststistical equilibrium of the small-scale components
of turbulence.
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